Harmful Algal Bloom Monitoring Guidance

For Colorado drinking water providers with surface water sources From the Colorado Harmful Algal Bloom Workgroup

Step 1:	Visually inspect source waters for algae blooms at least weekly during bloom season (typically late
Observe and	summer through early fall). Taste and odor events, shorter filter runs, and changes in source water
prepare	quality may indicate the presence of a bloom. Before bloom season starts, be prepared and order
	cyanotoxin (microcystins and cylindrospermopsin) field tests, evaluate source and treatment
	options, and develop a monitoring, response, and communication plan.
	*If bloom observed continue to step 2
Step 2: Field	Immediately after observing bloom use microscopic examination or phycocyanin analyzers if
screen for	available or use jar and stick tests ¹ and field identification guide ² for presence of blue-green algae
blue-green	which could produce cyanotoxins. Continue examinations at least weekly during presence of bloom.
algae	
	*If blue-green algae are present continue to step 3
Step 3: Field	Monitor raw water intake for presence of cyanotoxins using a field test for source drinking water
screen for	(e.g., Abraxis Strip Test) immediately after identifying blue-green algae and then at least weekly
toxin	during presence of blue-green algae. You can use a field test for finished drinking water if you
presence in	freeze then thaw sample 3 times to release toxins within cells prior to analysis. Evaluate source and
raw water	treatment options. Identify and contact lab ³ in advance about sampling procedures and sample
	turnaround time in case toxins are detected in finished water.
	*If microcystins and/or cylindrospermopsin are present in raw water continue to step 4
Step 4: Field	Monitor finished water at entry point for presence of the cyanotoxin(s) detected in raw water using
screen for	a field test for finished drinking water (e.g., Abraxis Strip Test) immediately after detecting
toxin	cyanotoxin presence in raw water and then at least weekly during cyanotoxin presence in raw
presence in	water. Evaluate source and treatment options. Notify utility management about a response and
finished	communication plan in case cyanotoxins are present in the finished water above EPA's health
water	advisory values.
C. 5	*If microcystins and/or cylindrospermopsin are present in finished water continue to step 5
Step 5:	Send finished water sample (after quenching chlorine residual) to lab for quantification of the
Quantitative	cyanotoxin(s) detected in finished water immediately after detecting cyanotoxin presence in
lab analysis	finished water and then at least weekly during cyanotoxin presence in finished water. Evaluate
for toxin in finished	source and treatment options.
water	*If microcystin values are above 0.3 μg/L and/or cylindrospermopsin values are above 0.7 μg/L
water	(EPA's health advisory values), consult CDPHE (1-877-518-5608) so they can assist. Take a
	confirmation sample of the finished water within 24 hours and send to lab. If confirmation sample
	results are above health advisory values, follow utility response and communication plan and notify
	consumers. Consider monitoring for toxins at various points throughout distribution to look for toxin
	degradation and extent of impacted area using a field test for finished drinking water. Notify
	consumers that water has returned to acceptable levels after at least 2 consecutive finished water
	samples are below EPA's health advisory levels.
1 .	d stick test procedures developed by Kansas Department of Health and Environment to identify blue green

- Jar and stick test procedures developed by Kansas Department of Health and Environment to identify blue-green algae: www.kdheks.gov/algae-illness/download/Jar Test.pdf
- Field and Laboratory Guide to Freshwater Cyanobacteria developed by USGS: https://pubs.er.usgs.gov/publication/ofr20151164
- List of laboratories for toxin analysis developed by Oregon Health Authority:
 http://public.health.oregon.gov/HealthyEnvironments/DrinkingWater/Operations/Treatment/Pages/algaelabs.aspx

Resources:

- Colorado Harmful Algal Bloom Workgroup (303-692-3605) can assist with toxin sampling and evaluating source and treatment options.
- Colorado Lake and Reservoir Management Association (<u>www.clrma.org</u>) can assist with bloom and algae identification.
- Colorado's Water and Wastewater Agency Response Network (<u>www.cowarn.org</u>) can assist with resources to respond to a cyanotoxin health advisory exceedance.
- Colorado Water Quality Control Division's Local Assistance Unit (303-692-3665) can assist with harmful algal bloom training, toxin sampling and evaluating source and treatment options.