

October 9, 2019

Bear Creek Model Scenarios

BUILDING A WORLD OF DIFFERENCE*

Project Overview

- Develop predictive models of Bear Creek watershed and reservoir
 - Total phosphorus and total nitrogen
 - Use models to identify sources, inputs to the reservoir and reservoir dynamics
- Define potential management scenarios to control nutrient inputs
- Incorporate management scenarios into models

Modeling Changes from Last Meeting

- Developed management scenarios for simulation
- Incorporated recommendations form CDPHE and BCWA

Scenarios

- Use the models to quantify potential management implications
 - How are changes in the watershed management reflected in the reservoir?
 - Can changes in reservoir management improve water quality?
 - How would combined approaches impact water quality?

Hydros 2011 Watershed Management Scenarios

- ISDS modifications
 - Replace Existing ISDSs with a More Efficient Design
 - ISDS to Sewer Conversion / Connect to an Existing WWTP
 - ISDS to Sewer Conversion / Connect to a New WWTP
 - Providing Public Education on Proper ISDS Maintenance

- Rely on Evolving Nutrient Regulations
- Divert Bear Creek Water During Times of Suitable Water Quality
- Pretreatment via Constructed Wetlands
- Pretreatment via a Mechanical Pre-Treatment Plant

Reservoir Management Scenarios

- Change the operation schedule of the current aeration system
- Add a binding agent to reduce the PO4 mobility from the sediment
- Reduce inflow concentrations
- Reduce sediment oxygen demand

Watershed Scenarios

- Understand watershed dynamics
- Quantify source contributions
- Quantify changes to treatment plant concentrations

Source Quantification

- Watershed model includes
 - Land use water and nutrient runoff
 - Point source inputs
 - On-site Wastewater Treatment Systems (OWTS)
- Can "turn off" sources to quantify the total delivered load
 - Ran model for 1998-2016 simulation period

Model Land Use

- Combined different data sets to develop unified land use
 - USDA crop land use data
 - Use parcel data from Clear Creek and Jefferson Counties

Wastewater Treatment Facility Input

- 11 WWTF discharge and water quality data
 - Provided discharge data
 - Reg 85 data
 - DMR data
- Total phosphorus
 - More complete data set for period of record
- Total nitrogen
 - Not complete time series for any input
 - Typically ammonia with some nitrate as well

OWTSs

- NHD streams with 200 foot buffer as recommended by BCWA
- Erased buffered NHD streams from intersected Census Block data
- Intersected buffered NHD streams with intersected Census Block data

Total Nitrogen Source Identification

Bear Creek

Turkey Creek

Total Phosphorus Source Identification

Bear Creek

Turkey Creek

Total Source Identification

Total Nitrogen

Total Phosphorus

Transformation sensitivity

- HSPF simulates nutrient fate and transport
- Assumed first order nutrient loss
 - Aggregates potential uptake mechanisms
 - Changed parameter by +/- 25%
- Total nitrogen loads changed by <0.5%
- Total phosphorus loads changed by <0.25%
 - Summer slightly more sensitive than winter by remained <0.5%

WWTF Model Scenarios

- Reg 85 TP only (TP = 1.0 mg/L)
- Reg 85 TP & TN 10 years (TP = 0.7, TIN = 7 mg/L)
- Reg 85 TP & TN 10 years (TP = 0.7, TIN = 15 mg/L)
- BCWA recommendation TP = 0.2 mg/L
- BCWA recommendation TP = 0.05 mg/L
- BCWA recommendation TN = 2 mg/L

Didn't have complete TN for any facility

Scenario Modeling Approach

- Example effluent concentration
- Scenario 1: TP = 1 mg/L
- Steady concentration to test limit impacts

WWTF Scenario Results

Scenario	Median Annual	Percent	Median Annual	Percent
	Delivered TN Load (lb)	Change	Delivered TP Load (lb)	Change
WWTP @ TP 1.0 mg/L			863	+8%
WWTP @ TP 0.2 mg/L			767	-4%
WWTP @ TP 0.05 mg/L			748	-7%
WWTP @ TIN 15 mg/L TP 0.7 mg/L	18,850	+11%	823	+3%
WWTP @ TIN 7 mg/L TP 0.7 mg/L	17,210	+1%	823	+3%
WWTP @ TN 2.0 mg/L	16,440	-4%		

OWTS Sensitivity

- OWTS load modeling options
 - Steady flow and load into stream
 - Monthly variable loads
 - Dynamically simulating
- Dynamic simulation incorporates environmental conditions on loadings
 - When it's dry, less OWTS loads

OWTS Sensitivity

- Assumed OWTS inputs within the 200' buffer were reduced
- Assumed flows from OWTS were ½ of the baseline model
- Delivered TN loads reduce by 37%
- Delivered TP loads reduce by 29%

Reservoir Model Sensitivity

- Model flows from measured USACOE
 - Split flows between Bear Creek and Turkey Creek based on HSPF results
- Inflow TN and TP concentrations from HSPF results
 - Fractioned into nutrient species based on monitoring data
- Temperature and dissolved oxygen inputs from monitoring data

Reservoir Scenarios

- Used the model to evaluate current conditions
- Total phosphorus and chlorophyll a
 - Top 2 m of the water
 - Model output every 5 days for 16 years
 - Average results for growing season by year
 - Compared against WQ standards
 - TP = 22.2 ug/L
 - Chl a = 12.2 ug/L

Dissolved Oxygen Results

- Bottom 2 m of the water
- Average results for growing season by year
- Compared against WQ standards (6 mg/L)
- Don't have records of aeration before 2011, made assumptions based on post-2011 data

Chlorophyll a Results

- Time series plot of top 2 m
- Monthly variation across all years

Total Phosphorus Results

- Time series plot of top 2 m
- Monthly variation across all years for top and bottom 2 m

Reservoir Scenarios

- Aeration
 - Turn off aeration
 - Set aeration at different starting points
- Change external loads
- Change sediment loading

Aeration Simulations

- Turn off aeration
- Change start date
 - Historically not a consistent schedule
- Look at impacts of turning on March, April...July

No Aerators-Dissolved Oxygen

• Bottom dissolved oxygen improves considerably

No Aerators-Total Phosphorus

• Aerators are helping to reduce benthic phosphorus release

No Aerators-Chlorophyll • Aerators are helping to reduce algal growth No Aerators No Aerators No Aerators No Aerators No Aeration No Aeration No Aeration

Aeration Compliance impact

• Not much impact on the growing season TP and Chl a average

Aeration Results Summary

- Aeration has a slight impact on chlorophyll and TP
- Primary impact on dissolved oxygen
 - If start before May 1, bottom DO typically over 4 mg/L

External Load Summary

- Reducing external loads can help reduce TP and chlorophyll
- Reducing loads alone, can't solve those issues

Sediment as a Source

- Sediment can be a significant source of phosphorus, especially with low oxygen
- Tested the model by turning off those sources
 - First order sediment
 - PO4 source
 - NH4 source
 - Combination

First Order Sediment Impacts

- Modeled sediment to account for organic accumulation
 - Will increase SOD with more organics

Sediment Ammonia Release Impacts

• No significant impact on nutrients, chlorophyll or oxygen through the growing season

Sediment Phosphorus Release Impacts

- Sediment is a significant source of phosphorus
- Impacts growing season chlorophyll and TP concentrations

Sediment Phosphorus Release Impacts – Time Series

- See a dampening of chlorophyll and TP
- Removed a significant source

Sediment Oxygen Demand

- Reduce zero-order sediment oxygen demand by 50%
- Improves TP and chlorophyll levels
- SOD will decrease with lower nutrient loads
 - 50% reduction in loads would result in ~30% decrease in SOD

Sediment Load Summary

- Reducing sediment loads can help reduce TP and chlorophyll
- Reducing loads alone, can't solve those issues

Where to now...

- B&V will complete model report
- Model has evaluated individual scenarios
 - Attainment will require combination of approaches
 - Will develop scenarios with multiple management approaches
- CDPHE will move into TMDL development

